KINETICS OF THE DEACTIVATION OF THE VIBRATIONS
OF HIGHLY EXCITED OSCILLATORS IN AN INERT GAS
MEDIUM, TAKING ACCOUNT OF SPONTANEOUS RADIATION

M. H. Safaryan UDC 539.196+533.72

In the diffusion approximation, the article discusses the kinetics of the process of deactiva~
tion of the vibrations of radiating anharmonic and harmonic oscillators in an inert gas me-
dium. Limiting solutions are given for the purely radiational deactivation of a classical
Morse oscillator and of a harmonic oscillator. It is shown that, with an increase in the ef-
fect of spontaneous radiation, the role of the anharmonic character of the vibrations in the
process of deactivation increases; the initial (or arbitrary) distribution relaxes more slow-
ly the higher its energy level, i.e., the greater the effect of the anharmonic character of
the vibrations. The results are of importance for systems with a considerable population
of the upper vibrational levels of the molecules, which may arise as a result of a chemical
reaction or by the optical pumping of a gas.

Taking account of the anharmonic character of the vibrations in the description of the vibrational re~
laxation of diatomic molecules without taking account of radiation has shown that, in an inert gas medium,
deactivation of the vibrations of anharmonic oscillators, in comparison to harmonic oscillators, takes place
with a considerable overpopulation of the upper levels [1], while in a purely molecular gas the guasi-steady-
state distribution is inverse in the upper levels [2]. In what follows it is shown that the inverse effect in
pure gases, connected with the anharmonic character of the vibrations, decreases-{and disappears) due both
to vibrational-translational and to radiational transitions with the upper levels [3-5]. It is also of interest
to evaluate the effect of the factor of the anharmonic character of the vibrations on the relaxation of the
vibrations of the molecules in a medium of inert gas in the presence of radiation, as well as the overall
effect of radiation on the deactivation process of the vibrations in the case when there is no exchange of
vibrational quanta. Below this is done qualitatively, without setting up an actual model of the molecule.

We consider a system of diatomic molecule—Morse oscillators (and of harmonic oscillators) in an
inert gas medium, playing the role of a thermostat with the temperature T. At the initial moment of time,
the vibrational energy of the oscillators considerably exceeds the value of kT.

An oscillator may lose energy due to collisions with particles of the thermostat and as the result of
radiational transitions. To describe the kinetics of the change in the distribution functions of the molecules
f(e, t) with respect to the vibrational energy ¢, the possibility of using the diffusion theory has been pro-
posed; in the theory of thermal relaxation, in addition to the usual conditions (see below), the deactivation
of highly excited oscillators, v > 1 (v is the number of the vibrational level), must also be considered.

The kinetic equation for f(e, t) consists of terms describing the thermal [1] and radiational deactiva-
tion of the vibrations of the molecules; it has the following form:
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Here J is the intensity of the radiation of a molecule; f°(¢) is the equilibrium function of the distribu-
tion, corresponding to the temperature T; B is the "diffusion” constant in the space g; 74 is the free-flight
time of the molecules; ({ (Ag)? is the square of the change in the energy resulting from a collision between
a molecule and a particle of the thermostat, averaged over all the collisions in unit time; the diffusion ap-
proximation holds if ((Ae)?®) <&, [¢, is the region of change in f(e, t)].

Let us obtain the value of J for a classical Morse oscillator.*

The intensity of dipole radiation is equal to
J = (T @

Here c is the velocity of light; e is the charge of an electron; r is the interatomic distance; the angu-~
lar brackets denote averaging with respect to all values of r with a given value of the vibrational energy
¢; the dots denote differentiation with respect to the time.

The trajectory of the intramolecular motion r(t) is determined from the equation
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where 4 is the reduced mass of a molecule; V(r) is the intramolecular potential. In the case of a Morse
oscillator

V(r)=D({ — o)

where D is the dissociation energy of a molecule, we have
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Averaging (4), we have
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Substituting the result of integration of (5) into (2), we obtain the intensity of the radiation of a dipole
Morse oscillator

J= SV T—a = p (22 e Y T—% (6)

With £/D « 1, the Morse oscillator is equivalent to a harmonic oscillator; in this case, (6) goes over
into the usual expression for the intensity of the radiation of a harmonic oscillator:
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where A; is the Einstein coefficient for spontaneous radiation.

*We note that the approximation of a classical Morse oscillator is particularly useful with application to
the deactivation of the upper levels, since it permits taking account also of multiquantum transitions.
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Hzo) [ Taking account of (7), formula (6) is conveniently represented
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: for the process of radiational relaxation. We have
fix, 1) 1l i 'r T
i
1 gl of o (9)
/l 05 ; Bt T o {']f}
28 ll The solutions of Eq. (9) differing from zero, under the condition of
: i [ i / \ l conservation of the total number of particles, and taking account of
“ | : (8) and (7}, for Morse oscillators (fy) and harmonic oscillators (fy)
| ;I II ! V \ have, respectively, the following form:
24l ‘1 |
! | ) Vi—x
TN o9 2 VR
AN N s
NYRVAN N pp = 2y A=Vioa oy (10)
a2 25 7 : T U fyey i+ Vi—z .
Fig. 2 . fo (@, T) = e (z€7), zer <1 a1

Here 7 = t/73; x = £¢/D; ¢(x) is the initial distribution function {p ) = f(x, 0)}.

From a comparison of (10) and (11) it can be seen that the time change in the distribution functions of
anharmonic and harmonic oscillators as a result of radiational deactivation differs considerably. This
change is also appreciable at x « 1, if 7 > 1, and especially appreciable in the remaining region of values
of x at any arbitrary values of 7; in particular, the limits for the reversion to zero of the functions £, and
fi1 are shifted considerably: f, = Owhenx =x; =€™7, while fj =0 only at x = x, = 4™ 1+eT)? > x. The
anharmonic character of the vibrations also has an effect on the character of the change in the form of the
initial distribution, since the derivatives 8f;/9x and af,/8x also differ considerably; for example, with
time, the table-shaped form of the initial distribution for f,, shifting along x, is mainly simply constricted
and rises, while for f; there is an appreciable amount of distortion and of washing out of the boundary from
the side of large values of x.

What has been said above is illustrated by Figs. 1 and 2, on which is shown the relaxation of the two
initial distributions for Morse oscillators (solid curves) and harmonic oscillators (dotted curves). Figure
1 corresponds to an initial Boltzmann distribution with the temperature Ty, ay = D/kT, = 7; the figure shows
the function f(x, 7)/¢(x) at different moments of time 7'=t/7y; it is evident that, in the region x < x < xy)
where f, = 0, a considerable part of the initial population of the Morse oscillators is still retained. Figure
2 illustrates the change in the initial distribution, having a sharp maximum at x = 0.8; this is an evident
difference in the change of the value and form of the distribution function (with given values of x, 7) for an-
harmonic and harmonic oscillators.

Under actual conditions, it is difficult to completely exclude thermal relaxation.

In the general case, the analytical description of the process admits of a model of harmonic oscilla~
tors; we give the corresponding solution.
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For this model, the coefficient B is equal to
12)

B = kTt %

where Ty is the time of vibrational (thermal) relaxation in the system.
Taking account of (12) and (7}, Eq. (1) is written in the form
2 a
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Here
=T,/ Tg T1=10/T, a=D/kT

In Eq. (13) we formally replace the quantity a by ' = a(l + ¢} and 7y by 74' = (1 + ¢} 74; we then arrive
at the usual equation for the thermal relaxation of harmonic oscillators in the absence of radiation {a = 0),

whose solution is known in the approximation ¥ (1) ~ 0 (see, for example [6]).

In particular, for the initial value of 8, the functions
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[, (z) is a modified Bessel function of zero order], and the initial Boltzmann distribution relaxes in accor-

dance with the law
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Consequently, a system of radiating oscillators relaxes in an inert gas medium with retention of the
form of a Boltzmann distribution whose temperature depends on the time in accordance with formula (17).

With a »1, (@)™ —0, (15) goes over into (11); with @ —0, (16) and (17) describe the thermal relaxa-

tion [6].
For Morse oscillators, no general expression is known for the coefficient B. With deactivation of the

upper levels, the following expression, used in [1}, may be used as an approximation:
(16)

Be2DTx, V1—z(1 —Vi—2)

We note that the above approximation holds if the dependence of ((Ae)z) on ¢ is determined on the
basis of the value of (1% ; this occurs with a nonadiabatic interaction between the oscillators and particles

of the thermostat, in particular, in systems of the type ICl + He or CO + H {(the mass of each atom of a
molecule considerably exceeds the mass of a particle) and of the type HBr + Ar (the mass of a particle is

much greater than the mass of the light atom of the molecule).
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A solution of Eq. (1) with (8), (16) can be obtained numerically, with a boundary condition correspond-
ing to conservation of the total number of oscillators. However, certain qualitative estimates of the effect
of radiation on the relaxation of Morse oscillators can be made on the basis. of the equation itself. This
equation has a simpler form if it is written for the function & = fvVI—x, that is

a———-2]/1—-—x(1-—]/1——x) azz +[a(2l/1—x(1—1/-1—.t) +
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With « > 1, at the limit, (17) goes over into (9), with (8), whose solution is (10); with o —0, (17) de-

scribes the thermal relaxation [1]. With o = 0, it follows from (17) that, formally, the increase in the

values of @ and 7y [compare (13)] due to radiation is here nonlinear with respect to x; actually, in place of

o we have the quantity o vVI—x; therefore, at x «1 the effect of radiation will be close to that for harmonic

oscillators, while at-large values of x, x ~ 1, it will be substantially less.

Figures 3 and 4 give the results of a numerical calculation for the initial distributions used above
(Figs. 2 and 3) (the temperature of the thermostat corresponds the value ¢ = 30); the functions f(x, 71)/
¥(x) (Fig. 3) and f(x, 71) (Fig. 4) are shown at the moment of time 7y = t/7, = 0.5, for several values of the
parameter o = 7,/7;. With an increase in the value of o (as well as of 7;), the difference between the re-
laxations of Morse oscillators and harmonic oscillators increases, approaching the limiting case with
a > 1 (Figs. 1 and 2); to compare Figs.1 and 2 with Figs. 3 and 4, it must be taken into account that 7 =
aTi. On Figs. 3 and 4 the solid lines also relate to Morse oscillators, and the dotted curves to harmonic
oscillators.

It follows from the above considerations that the. effect of radiation on the process of the deactiva-
tion of the vibrations of oscillators in an inert gas medium depends on the value of the ratio of the time of
vibrational relaxation to the radiational lifetime of the ground level, i.e., 7y /7y. At 7y/7y > 1, the deactiva-
tion of classical oscillators is described by formulas (10) and (11); these formulas make it possible to ex-
hibit the limiting tendency of the effect of the factor of the anharmonic character of the vibrations, with the
presence of radiation. For a system of harmonic oscillators, the effect of radiation is equivalent to a
formal decrease in the temperature of the thermostat and of the time scale of the process by (1 + 7y)/7
times. For Morse oscillators, this effect depends on the region of the deactivation energy; with ¢ < D, it
is analogous to harmonic oscillators; with £ ~ D, it is substantially less. The anharmonic character of the
vibrations -slows down considerably the deactivation of the vibrations of the upper levels of radiating oscil-
lators. On the whole, radiation reinforces the relative redistribution of the population of the upper levels
of Morse oscillators relaxing in an inert gas medium.

The author thanks N. N. Magretova for carrying out the numerical calculation.
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